|
感谢关注耳机俱乐部网站,注册后有更多权限。
您需要 登录 才可以下载或查看,没有账号?注册
x
本帖最后由 fncliker 于 2016-5-23 08:53 编辑
玻璃电容(全称glass dielectric capacitor,玻璃介电电容器),是以玻璃为电介质的电容,是各方面最接近理想电容(ideal capacitor)的实体电容,也是历史上最神秘最不为人所熟知的电容。
本文以“前世今生”、“最接近理想电容”和“音频应用探索”三个部分,细说一次玻璃电容。并附录原版手册和一个英文参考。
前世今生
玻璃电容于1960年代中后期问世,只被一家(两家合作)厂商批量生产过,这种优秀的电容品类、神器般的存在,六十年来却鲜为人知。
1960年代中后期,AVX与Cornning合作开发出了玻璃电容。AVX是老牌电容厂商没错,这个Corning呢,就是如今苹果手机传扬到家喻户晓的大猩猩玻璃厂商——康宁,更久远一点,1879年最先发明并制造出玻璃灯泡、使爱迪生的发明成为现实,1947年最先发明并大规模制造出电视显像管,使电视进入千家万户,如今,康宁位列世界财富五百强第249位(2014年数据)。
那个时候康宁是有自己的电阻部门的,名字叫电阻部门,实际上统领无源电子元件业务,品牌叫做CGW,也就是Cornning Glass Works,康宁公司名称缩写。CGW独特的蓝色漆皮电容、电阻如今还偶尔可见。
这两个竞争者的合作,从一开始就充满了悬念。
历史久远,难以证实,比较合理的解释是,AVX有电容技术、Cornning有玻璃技术,面对1960年代中期美苏两国航天竞赛的需求,这两家联手设计制造出了此前只在理论上存在的无敌电容。
NASA、美军如获至宝。如今最容易Google到的玻璃电容的表述就是“NASA uses glass capacitors to help wake up the space shuttle's circuitry and help deploy space probes.”,翻译过来是“美国航空航天局(NASA)使用玻璃电容来唤醒航天飞机的电路和部署空间探测器。”可见此事流传甚广、玻璃电容有多重要。下一部分我们来分析这种电容为什么这么牛叉。
玻璃电容由Conning欧洲公司下属的法国SOVCOR公司制造。所以,市面上的玻璃电容,有AVX、CGW和SOV三种品牌,其实都是分属两家合作厂商,在同一个厂造的。早期,NASA和美军不区分这三种品牌,均纳入军规;1997年起DOD全面规范军规的时候,CGW和SOV玻璃电容已经不复存在,AVX对应修改了型号规则。(综合自NASA、DOD、AVX网站公开资料)
这种电容直至如今,都没有其他厂商生产出来过。苏联,德国,以色列,捷克(捷克斯洛伐克),日本,都没有。
所以还不见得是专利壁垒的问题,而很可能是这种电容的制造技术,太难了。
而且(因此?)它非常贵,直到它停产,还保持着批量采购单价10到30美元的身段。(据www.aerobasegroup.com航空基地集团历史参考报价)
Cornning于1987年出售了它的电阻部门(包括玻璃电容唯一的制造厂),买家是AVX的另一个竞争对手:VISHAY。(据1987年9月9日纽约时报)CWG、SOV品牌消失,AVX成了玻璃电容的唯一供应商。
由于种种原因,玻璃电容一直蒙着一层神秘的面纱,不但曲高和寡,而且人们对它知之甚少。
最接近理想电容
理想电容是介质损耗为零,漏电为零,分布电感为零,频率特性一致,充电电阻为零,时间常数为零,电压源内阻为零,可以输出趋于无穷大的电流。这八项,其他类型的电容无论如何制造都无法达到其中任意一项,是结构、材料原理的天限。
玻璃电容呢?它直接达到了其中四项:充电电阻为零,时间常数为零,电压源内阻为零,可以输出趋于无穷大的电流。而另外四项,也都非常接近。更有甚者,玻璃电容还实现了零老化率、零压电噪声。请参阅本文附录二digikey页面给出的技术说明。
更详细技术原理和测试图表等,请参阅1993年Springer Netherlands出版的CJ Kaiser著《Glass Capacitors》(非常抱歉,笔者没有机会拜读,所以技术详情展开不够请谅解)。
AVX军用版文档是这样写的:
Glass dielectric capacitors have been the capacitors of choice for extreme long-term stability and reliability for almost fifty years. They are available in glass or glass composition, and are covered by MIL-PRF-11272 and MIL-PRF-23269 or MIL-PRF-11015 and MIL-PRF-39014, respectively.
CY Series Glass Dielectric capacitors, available in both axial and radial configurations, offer the industry’s highest performance and maximum stability for aerospace, military and satellite applications which require “S” level reliability, radiation hardness and operating temperatures up to +200°C. Capacitance values range from 0.5 pF to 10,000 pF with tolerances to ±0.5%. Rated voltage is from 50 to 2,000 VDC, with a temperature coefficient of 140±25 ppm/°C. Operating temperature range is -75°C to +200°C.
翻译过来是:玻璃介电电容器已被作为极端长期稳定和可靠性的电容选择近五十年。供应玻璃电容或玻璃成分电容,并且全部列入了mil-prf-11272和mil-prf-23269或mil-prf-11015和mil-prf-39014军规。
CY系列玻璃介质电容器,同时供应轴向和径向配置,为航空航天提供业界最高性能和最大的稳定性,军事和卫星应用的需要“S”级可靠性和辐射强度,而且操作温度高达200摄氏度。电容值的范围从0.5PF到10000PF,(最小)公差±0.5%。额定电压50~2000伏直流。在-75摄氏度到正200摄氏度工作温度范围的温度系数为140±25ppm/摄氏度。
这些惊世骇俗的数据,竟然连一个金属屏蔽罩、保护外壳、散热器都不需要,赤裸裸地就达到,太不可思议了。要知道,排名第二的特氟龙电容是披着纯钛外壳才只能比较接近玻璃电容。
AVX玻璃电容手册标记的推荐应用(APPLICATIONS)是:
Sample/Hold Circuits 采样/保持电路
Capacitor Reference Standards 电容器的参考标准
Low Loss RF Filters 低损耗射频滤波器
Voltage Controlled Oscillators 压控振荡器
Matching Networks 匹配网络
音频应用探索
听说过玻璃电容的人可能不少,了解过玻璃电容的人却不多,接触、使用玻璃电容的几乎都是与火箭、航天飞机、卫星、导弹、战机、核潜艇这些打交道的人,或者后来超高端仪器仪表、石油、勘探方面的,其中……有没有发烧友?
国外发烧友论坛偶有关于玻璃电容特性这么好、运用到音频上会怎么样的议题,不过几乎都寥寥数语、键盘大师,没有详细的实践分享。Ebay上也有卖家宣称玻璃电容Great For Audio(意思是说,用在音响上那是极好的),可也就是这几个字而已。
玻璃电容特性这么好、运用到音频上会怎么样?
既然接近理想电容,那么从技术层面看,玻璃电容对音频电路无疑是极好的,体现在:
所有电容里最低的介质损耗,意味着保真、干净。
所有电容里最低的漏电,意味着安全。
极低的分布电感(只有NASA御用特氟龙电容可以匹敌),意味着纯净。
充电电阻为零,时间常数为零,电压源内阻为零,意味着什么?整体降低机器电源内阻?
可以输出趋于无穷大的电流,NASA最看重的这个,意味着动力绵绵不绝?
零老化率?这个,发烧友一般不大在意。
零压电噪声,嚯嚯!
别高兴得太早,玻璃电容至今最大只有10nF!
音频应用里,电容有六类职能:滤波、储能、旁路/去耦、耦合、反馈、分频。其中除了反馈可以直接使用玻璃电容之外,其他的都不现实,玻璃电容容量太小。
别沮丧得太早,电容是可以并联使用的!
滤波电容上并联玻璃电容,它的零内阻特性可以整体降低电源内阻。
储能电容上并联玻璃电容,它的零延迟特性可以提高动态响应速度和动态范围。
旁路/去耦电容上并联玻璃电容,它的零充电电阻特性和零压电噪声特性可以消除其频率范围内的几乎所有电噪声。
耦合电容上并联玻璃电容……它的频率特性没见过公开资料,不敢说,但是它Q值无敌,高频特性一定好。
分频电容,有源分频部分它的极高精度无疑有利,频率特性还是一样存疑;无源分频(音箱里的分频器)电容上并联玻璃电容,跟耦合部分一样,至少高频会改善不少。
反馈电容使用玻璃电容,这事跟NASA一样,都不用选,直接一颗接近理想电容的,铁板钉钉。
到这里,都快成键盘大师了 ^_|||。音响里没有万用仙丹,不可能一加上就解决一切问题、包治百病。不过方向是对的。
怎么办?试呗!
Jaklio, 2016.05.20于南塔岭下
修改了一个部分,那就是,玻璃电容并没有停产,AVX只是将其中的老标号产品列入了停产清单,新标号产品在继续供应。这是个好消息!(2016.5.23)
(本文完。试的结果请待后篇,谢谢阅览。)
附录一:AVX官网玻璃电容手册 和 性能特性图表
http://catalogs.avx.com/GlassDieletricCapacitors.pdf
http://www.avx.com/docs/techinfo/GlassCapacitors/perform_gl.pdf
附录二:前几年digikey玻璃电容的介绍,顺带翻译第一句:玻璃电容集合了多种其它电容的若干种优点。
Glass capacitors offer several advantages over types of capacitor. In particular glass capacitors are applicable for very high performance RF applications:
Low temperature coefficient: Glass capacitors have a low temperature coefficient. Figures of just over 100 ppm / C are often obtained for these capacitors.
No hysteresis: Some forms of capacitor exhibit hysteresis in their temperature characteristic. This is not the case for glass capacitors which follow the same temperature / capacitance when the temperature is rising and falling.
Zero ageing rate: Many electronics components change their value with age as chemical reactions take place within the component. Glass capacitors do not exhibit this effect and retain their original value over long periods of time.
No piezo-electric noise : Some capacitors exhibit the piezo-electric effect to a small degree. This can result in effects such as microphony on oscillators. Where this could be a problem, the use of glass capacitors could help solve the problem.
Extremely low loss / High Q: Glass capacitors are very low loss as there is virtually no dielectric loss. This enables very high Q circuits to be built using them. provided the other components (e.g. inductors) are not lossy.
Large RF current capability: Some capacitors are not able to withstand large values of current. This is not the case for glass capacitors which are suitable for use in RF high power amplifiers, etc.
High operating temperature capability : Glass dielectric capacitors are able to operate at very high temperatures. Many are able to operate at temperatures up to about 200C without fear of damage or performance shortfall.
Glass capacitor construction
The construction of glass dielectric capacitors is relatively straightforward to understand. The capacitor consists of three basic elements: the glass dielectric, aluminium electrodes and the encapsulation. However the assembly of the glass capacitors is undertaken in a manner that ensures the required performance is obtained.
As the capacitance between two plates is not always sufficient to provide the required level of performance, the majority of capacitors use a multiplayer construction to provide several layers of plates with interspersed dielectric to give the required capacitance.
Although the glass plates are always flat, and tubular forms of construction are not applicable, the glass capacitors are usually available with leads emanating in either a radial or axial form. Essentially the leads either exit the encapsulation at the side or the end.
Glass capacitor applications
Glass capacitors can find applications in many areas as a result of their performance characteristics. They do tend to be specialist components and are normally fairly costly.
Circuits exposed to temperature extremes: With the tolerance to a wide range of temperatures, both high and low, some circuits that may be exposed to very harsh environmental conditions may choose to use glass capacitors. Not only can they withstand high and low temperatures, but they do not change value at these extremes by a great amount. Accordingly remote sensors may choose to use glass capacitors.
Applications requiring a high Q circuit: Many circuits including oscillators and filters may require high Q components to give the required performance. Filters will be able to attain their required bandwidth, and for oscillators there are a number advantages including improvement of phase noise performance, reduction in drift and reduction of spurious oscillations.
Low microphony requirements: It may be expedient to use glass capacitors in circuits where microphony may be a problem. RF oscillators including those found in phase locked loops and PLL synthesizers may benefit from their use.
High power amplifiers: The high current capability of glass capacitors may enable their use in RF power amplifiers where other forms of capacitor would not be suitable.
High tolerance areas: In many areas such as filters or free running oscillators the high tolerance and precision accompanied by the low temperature coefficient may be required to maintain the tolerances within a precision circuit.
|
|